ZINB-Based Graph Embedding Autoencoder for Single-Cell RNA-Seq Interpretations

نویسندگان

چکیده

Single-cell RNA sequencing (scRNA-seq) provides high-throughput information about the genome-wide gene expression levels at single-cell resolution, bringing a precise understanding on transcriptome of individual cells. Unfortunately, rapidly growing scRNA-seq data and prevalence dropout events pose substantial challenges for cell type annotation. Here, we propose model-based deep graph embedding clustering (scTAG) method, which simultaneously learns cell–cell topology representations identifies clusters based convolutional network. scTAG integrates zero-inflated negative binomial (ZINB) model into adaptive autoencoder to learn low-dimensional latent representation adopts Kullback–Leibler (KL) divergence tasks. By optimizing loss, ZINB reconstruction jointly optimizes cluster label assignment feature learning with topological structures preserved in an end-to-end manner. Extensive experiments 16 RNA-seq datasets from diverse yet representative platforms demonstrate superiority over various state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

Single-cell SNP analyses and interpretations based on RNA-Seq data for colon cancer research

Single-cell sequencing is useful for illustrating the cellular heterogeneities inherent in many intricate biological systems, particularly in human cancer. However, owing to the difficulties in acquiring, amplifying and analyzing single-cell genetic material, obstacles remain for single-cell diversity assessments such as single nucleotide polymorphism (SNP) analyses, rendering biological interp...

متن کامل

A Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data

Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...

متن کامل

Network embedding-based representation learning for single cell RNA-seq data

Single cell RNA-seq (scRNA-seq) techniques can reveal valuable insights of cell-to-cell heterogeneities. Projection of high-dimensional data into a low-dimensional subspace is a powerful strategy in general for mining such big data. However, scRNA-seq suffers from higher noise and lower coverage than traditional bulk RNA-seq, hence bringing in new computational difficulties. One major challenge...

متن کامل

netSmooth: Network-smoothing based imputation for single cell RNA-seq

Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic technical biases, such as dropouts (zero or near zero counts) and high variance. Current analysis methods rely on imputing missing values by various means of local averaging or regression, often amplifying biases inherent in the data. We present netSmooth, a network-diffusion based method that uses priors for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i4.20392